Web Scraping with Python

Web Scraping with Python

Nov 8, 2020ยท

4 min read

Play this article

You don't need to be a guru in python, just a basics of HTML and python is sufficient for this web scraping tutorial.

Let's dive in..

The tools we're going to use are:

  • Request will allow us to send HTTP requests to get HTML files
  • BeautifulSoup will help us parse the HTML files
  • Pandas will help us assemble the data into a DataFrame to clean and analyze it
  • csv(optional)- If you want to share data in csv file format

Let's Begin..

In this tutorial, we're going to scrape IMDB website, which we can get title, year, ratings, genre etc..

First, we'll import the tools to build our scraper

import requests
from bs4 import BeautifulSoup
import pandas as pd
import csv

Getting the contents of webpage into results variable

url = "https://www.imdb.com/search/title/?groups=top_1000"
results = requests.get(url)

In order to make content easy to understand, we are using BeautifulSoup and the content is stored in soup variable

soup = BeautifulSoup(results.text, "html.parser")

And now initializing the lists to store data

titles = []        #Stores the title of movie
years = []         #Stores the launch year of the movie
time = []          #Stores movie duration
imdb_ratings = []  #Stores the rating of the movie
genre = []         #Stores details regarding the genre of the movie
votes = []         #Store the no.of votes for the movie

Now find the right movie container by inspecting it, and hover over the movie div, which looks like below image

Alt Text

And we can see 50 div with class names:lister-item mode-advanced So, find all div's with that classname by

movie_div = soup.find_all("div", class_="lister-item mode-advanced")

find_all attribute extracts all the div's which has class name:"lister-item mode-advanced"

Now get into each lister-item mode-advanced div and get the title, year, ratings, genre, movie duration

Alt Text

So we iterate every div to get title, year, ratings etc..

for movieSection in movie_div:

Extracting the title

Alt Text

From image, we can see that the movie name is placed under div>h3>a

name = movieSection.h3.a.text  #we're iterating those divs using <b>movieSection<b> variable
titles.append(name) #appending the movie names into <b>titles</b> list

Extracting Year

Alt Text

From image, we can see that the movie launch year is placed under div>h3>span(class name="lister-item-year") and we extract it using text keyword

year = movieSection.h3.find("span", class_="lister-item-year").text
years.append(year)   #appending into years list

Similarly, we can get ratings, genre, movieDuration w.r.t classname

ratings = movieSection.strong.text
imdb_ratings.append(ratings)   #appending ratings into list
category = movieSection.find("span", class_="genre").text.strip()
genre.append(category)         #appending category into Genre list
runTime = movieSection.find("span", class_="runtime").text
time.append(runTime)           #appending runTime into time list

Extracting votes

Alt Text

As from the image, we can see that we have two span tags with classname="nv". So, for votings we need to consider nv[0] and for gross collections nv[1]

nv = movieSection.find_all("span", attrs={"name": "nv"})
vote = nv[0].text

Now we will build a DataFrame with pandas To store the data we have to create nicely into a table, so that we can really understand And we can do it..

movies = pd.DataFrame(
        "Movie": titles,
        "Year": years,
        "RunTime": time,
        "imdb": imdb_ratings,
        "Genre": genre,
        "votes": votes,

And now let's print the dataframe

Alt Text

As we can see on row 16 and 25, there is some inconsistent of data. So we need to clean

 movies["Year"] = movies["Year"].str.extract("(\\d+)").astype(int) #Extracting only numerical values. so we can commit "I"
 movies["RunTime"] = movies["RunTime"].str.replace("min", "minutes") #replacing <b>min</b> with <b>minutes</b>
 movies["votes"] = movies["votes"].str.replace(",", "").astype(int) #removing "," to make it more clear

And now after cleaning we will see, how it looks


Alt Text

You can also export the data in .csv file format. In order to export, Create a file with .csv file extension

movies.to_csv(r"C:\Users\Aleti Sunil\Downloads\movies.csv", index=False, header=True)

Alt Text

You can get Final code from my Github repo

Hope it's useful